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Present work deals with the study of parametric instability regions of a three-layered,

symmetric sandwich beam with conductive skins subjected to periodic axial load. In the

core layer, a magnetorheological elastomer (MRE) patch is placed in between two soft

viscoelastic patches. The governing equations of motion of the system have been

have been investigated for simply supported, clamped–pinned, clamped–guided, and

clamped–free end conditions by modified Hsu’s method. The instability regions of the

system with and without MRE patch, with different magnetic field strengths and

permeability of skin materials have been studied. The advantages of using MRE to

actively control the vibration of the sandwich beam have been demonstrated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures are very popular in aerospace and in many other industries due to their light weight and high-
energy absorption properties. They provide many advantages such as high-specific stiffness, good buckling resistance, easy
reparability, and high-corrosion resistance. The most important advantage is that optimal designs can be obtained for
different applications by choosing different materials and geometric configurations of the face sheets and cores. One of
such material to improve the design of sandwich beam is the use of magnetorheological elastomer (MRE) as core material.
Magnetorheological elastomers comprise of a class of smart materials whose rheological properties can be controlled
rapidly and reversibly by the application of an external magnetic field.

Most of the studies of sandwich structure [1–3] are devoted to the free vibration analysis considering classical theory or
the anti-plane concept which implies that the deflections of the upper and lower faces are equal, and the longitudinal
displacement distribution throughout the height of the core is linear. However, the classical theory is no longer valid when
one uses foam-like core material [4] and hence, a higher order theory is used which takes both the nonlinear displacement
fields of the core material and realistic supports into account. Frostig and Baruch [5] and Frostig [6] used this theory to
study the behavior of a symmetric and non-symmetric sandwich beam with a flexible core.

In many applications these sandwich structures are subjected to parametric excitation, where a small excitation can
produce a large response when the frequency of the excitation is closer to twice the natural frequencies (principal

parametric resonance) or combination of different modal frequencies (combination resonances). The study of parametric
instability is well known and can be found in detail in various textbooks, e.g., [7,8]. One may use several methods to study
the parametric instability regions. Saito and Otomi [9] modified Hsu’s [10] procedure to determine the stability of
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: +913612690762.

dy).

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.03.039
mailto:dwivedy@iitg.ernet.in


ARTICLE IN PRESS

S.K. Dwivedy et al. / Journal of Sound and Vibration 325 (2009) 686–704 687
viscoelastic beams with an attached mass and viscoelastic end supports under axial and tangential periodic loads. Kar and
Sujata [11], Ray and Kar [12,13] studied the parametric instability regions for simple and combination resonances for
different types of sandwich beams with viscoelastic core by using the modified Hsu’s procedure. In these works classical
sandwich beam theory were used, and the core was assumed to be rigid in transverse direction. Recently, Dwivedy et al.
[14] studied the parametric instability regions of a three-layered soft-cored sandwich beam using higher order theory.

Sandwich beams with MRE cores possess field-controllable flexure rigidities due to the field-dependant shear modulus
of the MRE core. MRE was first introduced by Shiga et al. [15] and Jolly et al. [16], when many researchers concentrated on
magnetorheological fluid (MRF) and MRF-based damping devices. Carlson and Jolly [17] have shown that MRE is much like
MRF, except for the fact that chain-like structures of MRE are developed during the curing process, while the chain-like
structures of MRF are formed during operation. This difference makes the operating mechanism of these two types of
materials totally different. Employing a dipole model and a finite element method, Davis [18] noticed the maximum change
of the dynamic shear modulus of MRE is about 50% when the volume fraction is 27%. Zhou [19] reported that such a field-
dependent characteristic of the shear modulus vanishes when the deformation frequency is above several hundred Hertz.
Zhou and Wang [20,21] showed that the field-induced maximum relative change of the resonant frequencies, and the anti-
resonant frequencies of MRE-based sandwich beams could approach 30%. From an analytical solution for a vibrating
conductive beam, Zhou and Wang [20,22] found that the field-dependent stiffness of MRE-based sandwich beams with
conductive skins, subjected to magnetoelastic loads, is dominated by the field-dependent shear property of the MRE core.
To fabricate good natural rubber-based MREs with high modulus, Chen et al. [23] studied the influences of a variety of
fabrication conditions such as matrix type, external magnetic flux density, temperature, plasticizer, and iron particles on
the MREs performances. Zhang and Li [24] proposed a new effective permeability model of MRE with a novel structure,
which is designed to improve field-dependent performance. Deng and Gong [25] used magnetorheological elastomer as
adoptive tuned vibration absorber.

From the above literature it is apparent that no work has been reported to study the stability of soft-cored sandwich
beam with MRE subjected to parametric excitation. So in this work an effort has been made to study parametric instability
regions of a three-layered sandwich beam in which a part of the foam-core is replaced by MRE. The objective of using MRE
patch is to increase the stiffness of the structure actively by using magnetic field. In the considered structure due to
parametric excitation, when the axial load is very well below the critical Euler buckling load, the beam may fail due to
transverse vibration. Hence, it is very important to study the stability under axial loading to obtain the magnitude and
frequency at which the system becomes unstable by plotting the instability regions. By using MRE patch, an attempt has
been made to show that the instability region can be actively altered, so that an unstable system without MRE patch may
become stable with MRE patch.

The governing equation of motion of such a system is developed using higher order theory [5,6,14], and the parametric
instability regions are determined for different boundary conditions. This study will be very much useful to the
researchers/designers working in the field of active and passive vibration suppression of sandwich structures using
magnetic field.
2. Modeling

Fig. 1 shows a symmetric simply supported, three-layered sandwich beam of length L and width b. In the middle layer, a
magnetorheological elastomer patch is placed in between two patches of foam-like soft viscoelastic materials. The top,
core, and bottom layer thicknesses are dt, c, and db, respectively. The top and bottom skins have been subjected to axial
periodic load PðtÞ ¼ P0 þ P1 cos ot, where P0 and P1 are, respectively, the amplitudes of static and dynamic load; o is the
frequency of the applied load, and t is the time. The skin materials are considered to be conductive materials and a
magnetic filed with strength B is applied to the sandwich beam. The MRE core is configured with the chain-like structures
embedded in the material perpendicular to the skins. The applied magnetic field is parallel to such chain-like structures
and is perpendicular to the skins. Under dynamic deformations, motion-induced eddy current will be generated on the
skins. Thus, the magnetic field near the skins will be disturbed and magnetoelastic loads will be applied to the skins. As a
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Fig. 1. Schematic diagram of a three-layered soft-cored sandwich beam with MRE patch subjected to periodic axial loading and magnetic field.
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result, the bulk dynamic flexure rigidity is affected by the applied magnetic field through the field-dependant shear
modulus of the MRE part of the core and the magnetomechanical coupling mechanism of the conductive skins.

The assumptions made for deriving the governing equations are similar to that by Frostig [6] and Dwivedy et al. [14],
and are (i) the face sheets of the sandwich beam are modeled as Euler–Bernoulli beams, (ii) the transversely flexible core
layer is considered as a two-dimensional elastic medium with small deformations where its height may change under
loading, and its cross-section does not remain planar, and (iii) the longitudinal (in-plane) stresses in the core are neglected,
and the interface layers between the face sheets and the core are assumed to be infinitely rigid and provide perfect
continuity of the deformations at the interfaces.

The equation of motion is derived by using the extended Hamilton’s principle, which is given byZ t2

t1

ðdLþ dWncÞdt ¼ 0; L ¼ T � U, (1)

where L is the Lagrangian of the system, T the kinetic energy, U the internal potential energy, Wnc the non-conservative
work, d the variational operator, t1 and t2 define the time interval, and t the time coordinate.

The kinetic energy of the system is

T ¼ ð1=2Þ

Z L

0
mtð _u

2
t þ _w2

t Þdxþ

Z L

0
mbð _u

2
b þ

_w2
bÞdxþ

Z
vcore

rc _u
2
c dvþ

Z
vcore

rc _w
2
c dv

( )
, (2)

where m is the mass per unit length, u and w are the displacements in x and z directions, respectively; subscripts t, b, and c

represent the top, bottom, and core layers, respectively; (.) denotes the derivative with respect to time, and rc the density of
the core.

Based on higher order theory [6,14], the core is considered as a medium which transfers its inertial loads to the skins
rather than resisting them by itself. Thus, it prevents the wave-like behavior in the vertical and horizontal directions of the
core. The acceleration and the velocity in the vertical direction of the core are assumed to have the shape of the static
deformation fields. In general, the static displacements field throughout the height of the core is nonlinear, especially in the
vicinity of concentrated loads or supports. However, under uniformly distributed loads these nonlinearities are small and
hence a linear distribution can be used. Thus, the displacement inside the core is given by

uc ¼ ub þ ðdb=2Þwb;x þ ut � fðdt=2Þwt;xgf1� ðz=cÞg; wc ¼ ðwb �wtÞðz=cÞ þwt . (3)

The internal potential energy in terms of stress (s) and strain (e) is given by

U ¼

Z
vtop

sxx�xx dvþ

Z
vbot

sxx�xx dvþ

Z
vcore

tcgc dvþ

Z
vcore

szz�zz dv. (4)

Here sxx and �xx are the longitudinal normal stress and strain in the upper and lower skins, respectively; tc and gc are shear
stress and strain in the core, respectively; szz and �zz are the vertical normal stress and strain in the core, respectively; vtop,
vbot, and vcore are the volumes of the upper and lower skins, and the core, respectively.

The non-conservative work is

Wnc ¼ ð1=2Þ

Z L

0
PðtÞw2

q;x dxþ

Z L

0
½ntdut þ nbdub þmm

t dwt;x þmm
b dwb;x�dx, (5)

where ð Þ;x ¼ qð Þ=qx, nj and mm
j ðj ¼ t; bÞ are the distributed equivalent horizontal force and moments induced by the

magnetoelastic load on the top (t) and bottom (b) skins, respectively, and they can be expressed as [22]

nj ¼
B2

0bdj

mej
uj;xx, (6)

mm
j ¼ mMax

j þmLor
j ¼

B2
0bdj

m0

p
2 lnðx=L� xÞ

uj;x �
dj

2p
lnðx=L� xÞwj;xx þwj;x

" #
�

B2
0bd3

j

12mej
wj;xxx. (7)

Here, mej ðj ¼ t; bÞ is the permeability of the skins; m0 the permeability of free space, and B0 the magnetic field strength

which is applied in the transverse direction of the sandwich beam as shown in Fig. 1. In Eq. (7), mMax
j represents the

equivalent moment induced by Maxwell’s stress jump at top (j ¼ t) and bottom (j ¼ b) skins, and mLor
j represents the

equivalent moment induced by Lorenz body force at top (j ¼ t) and bottom (j ¼ b) skins.
Following non-dimensional parameters are used in the analysis:

P̄0 ¼ P0L2=ð2EqIqÞ; P̄1 ¼ P1L2=ð2EqIqÞ; xc ¼ Gn
c AcL2=E; ft ¼ EtAtL2=E; fb ¼ EbAbL2=E,

fc ¼ EcAcL2=E; g ¼ Gc=ðEtðc=dtÞðL=dtÞ
2 þ Ebðc=dbÞðL=dbÞ

2Þ; t̄ ¼ t=t0; x̄ ¼ ðx=LÞ

ūq ¼ ðuq=LÞ; w̄q ¼ ðwq=LÞ; m̄q ¼ ðmq=mÞ; m̄c ¼ ðmc=mÞ; ō ¼ ot0. (8)
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Here E ¼ ðEtIt þ EbIbÞ, P̄0 and P̄1 are the non-dimensional static and dynamic load amplitudes, respectively. Eq; Iq,
and Aq are the Young’s modulus, moment of inertia, and the area of cross-section of the qth ðt or bÞ layer, respectively.
Ec is the Young’s modulus and Ac the area of cross-section for the core and, t0 ¼ ðmL4=EÞð1=2Þ, where m is the total mass
per unit length; mc the mass of the core per unit length. G�c ¼ Gcð1þ jZcÞ is the complex shear modulus of the
viscoelastic core, where Gc is the phase shear modulus, j ¼

ffiffiffiffiffiffiffi
�1
p

, and Zc the core loss factor; and g the shear
parameter.

Using, extended Hamilton’s principle, the non-dimensional equations of motion are obtained as follows:

m̄t
€̄wt þ ð1=3Þðm̄cH1 þ m̄rH2Þ

€̄wt � ð1=12Þðdt=cÞ2ðc=LÞ2ðm̄cH1 þ m̄rH2Þ
€̄wt;xx

þ ð1=576Þðdt=cÞf1þ ðdt=cÞgðc=LÞ4ðxc=fcÞðm̄cH1 þ m̄rH2Þ
€̄wt;xxxx

þ ð1=24Þðdt=cÞðdb=cÞðc=LÞ2ðm̄cH1 þ m̄rH2Þ
€̄wb;xx

þ ð1=576Þðdb=cÞf1þ ðdt=cÞgðc=LÞ4ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄wb;xxxx

þ ð1=6Þðm̄cH1 þ m̄rH2Þ
€̄wb þ ð1=6Þðdt=cÞðc=LÞðm̄cH1 þ m̄rH2Þ

€̄ut;x̄

� ð1=48Þm̄tf1þ ðdt=cÞgðc=LÞ3ððxc=fcÞH1 þ ðxr=frÞH2Þ
€̄ut;xxx

� ð1=288Þf1þ ðdt=cÞgðc=LÞ3ðm̄cðxr=frÞH1 þ m̄rðxr=frÞH2Þ
€̄ut;xxx

þ ð1=12Þðdt=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄ub;x̄

þ ð1=48Þðm̄bÞf1þ ðdt=cÞgðc=LÞ3ððxc=fcÞH1 þ ðxr=frÞH2Þ
€̄ub;xxx

þ ð1=288Þf1þ ðdt=cÞgðc=LÞ3ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄ub;xxx þ fcðL=cÞ2w̄t

� ð1=4Þf1þ ðdt=cÞ2gððxc=4ÞH1 þ ðxr=4ÞH2Þw̄t;xx �fcðL=cÞ2w̄b

� ð1=4Þf1þ ðdt=cÞgf1þ ðdb=cÞgðxcH1 þ xrH2Þw̄b;xx þ ð1=2ÞðL=cÞf1þ ðdt=cÞgðxcH1 þ xrH2Þūt;x̄

þ ðft=48Þðc=LÞ3f1þ ðdt=cÞgððxc=fcÞH1 þ ðxr=frÞH2Þūt;xxxxx

� ð1=2ÞðL=cÞf1þ ðdt=cÞgðxcH1 þ xrH2Þūb;x̄

� ðfb=48Þðc=LÞ3f1þ ðdt=cÞgððxc=fcÞH1 þ ðxr=frÞH2Þūb;xxxxx

þ ðft=12Þðdt=cÞ2ðc=LÞ2w̄t;xxxx þ P̄w̄t;xx þ B2
0bd2

t L=ð2pm0EÞðlnðx̄=ð1� x̄ÞÞÞ;x̄w̄t;xx

þ B2
0bd2

t L=ð2pm0EÞ lnðx̄=ð1� x̄ÞÞw̄t;xxx � B2
0bdtL2=ðm0EÞw̄t;xx þ B2

0bd3
t =ð12EmetÞw̄t;xxxx

� B2
0bdtL2p=ð2m0EÞð1=ðlnðx̄=ð1� x̄ÞÞÞÞ;x̄ūt;x̄ � B2

0bdtL2=ð2m0EÞp=ðlnðx̄=ð1� x̄ÞÞÞūt;xx

� B2
0bdtc3Gc=ð48EcELÞð1þ dt=cÞūt;xxxxx þ B2

0bdbc3Gc=ð48EcELÞð1þ dt=cÞūb;xxxxx ¼ 0, (9)

ð1=6Þðm̄cH1 þ m̄rH2Þ
€̄wt þ ð1=24Þðdt=cÞðdb=cÞðc=LÞ2ðm̄cH1 þ m̄rH2Þ

€̄wt;xx

þ ð1=576Þðdt=cÞf1þ ðdb=cÞgðc=LÞ4ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄wt;xxxx þ m̄b

€̄wb

þ ð1=3Þðm̄cH1 þ m̄rH2Þ
€̄wb � ð1=12Þðdt=cÞ2ðc=LÞ2ðm̄cH1 þ m̄rH2Þ

€̄wb;xx

þ ð1=576Þðdb=cÞf1þ ðdb=cÞgðc=LÞ4ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄wb;xxxx

� ð1=12Þðdb=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄ut;x̄ � ð1=48Þf1þ ðdb=cÞgðc=LÞ3m̄tððxc=fcÞH1

þ ðxr=frÞH2Þ � ð1=288Þf1þ ðdb=cÞgðc=LÞ3ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄ut;xxx

� ð1=6Þðdb=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄ub;x̄

þ ð1=48Þf1þ ðdb=cÞgðc=LÞ3m̄bððxc=fcÞH1 þ ðxr=frÞH2Þ
€̄ub;xxx

þ ð1=288Þf1þ ðdb=cÞgðc=LÞ3ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄ub;xxx þ fcðL=cÞ2w̄b

� ð1=4Þf1þ ðdt=cÞgf1þ ðdb=cÞgðxcH1 þ xrH2Þw̄t;xx � ð1=4Þf1þ ðdb=cÞg2ðxcH1 þ xrH2Þw̄b;xx

þ ð1=2ÞðL=cÞf1þ ðdb=cÞgðxcH1 þ xrH2Þūt;x̄

þ ðft=48Þf1þ ðdb=cÞgðc=LÞ3ððxc=fcÞH1 þ ðxr=frÞH2Þūt;xxxxx

� ð1=2ÞðL=cÞf1þ ðdb=cÞgðxcH1 þ xrH2Þūb;x̄ � fcðL=cÞ2w̄t

� ðfb=48Þf1þ ðdb=cÞgðc=LÞ3ððxc=fcÞH1 þ ðxr=frÞH2Þūb;xxxxx

þ ðfb=12Þðdb=cÞ2ðc=LÞ2w̄b;xxxx þ P̄w̄b;xx þ B2
0bd2

bL=ð2pm0EÞðlnðx̄=ð1� x̄ÞÞÞ;x̄w̄b;xx

þ B2
0bd2

bL=ð2pm0EÞ lnðx̄=ð1� x̄ÞÞw̄b;xxx � B2
0bdbL2=ðm0EÞw̄b;xx þ B2

0bd3
b=ð12EmebÞw̄b;xxxx

� B2
0bdbL2p=ð2m0EÞð1=ðlnðx̄=ð1� x̄ÞÞÞÞ;x̄ūb;x̄ � B2

0bdbL2=ð2m0EÞp=ðlnðx̄=ð1� x̄ÞÞÞūb;xx

� B2
0bdtc3Gc=ð48EcELÞð1þ db=cÞūt;xxxxx þ B2

0bdbc3Gc=ð48EcELÞð1þ db=cÞūb;xxxxx ¼ 0, (10)
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ð1=6Þðdt=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄wt;x̄ � ð1=288Þðdt=cÞðc=LÞ3ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ

€̄wt;xxx

� ð1=12Þðdb=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄wb;x̄ � ð1=288Þðdb=cÞðc=LÞ3ðm̄cðxc=fcÞH1

þ m̄rðxr=frÞH2Þ
€̄wb;xxx þ ð1=24Þðm̄tÞðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þ

€̄ut;xx þ ð1=144Þðc=LÞ2ðm̄cðxc=fcÞH1

þ m̄rðxr=frÞH2Þ
€̄ut;xx � ðm̄tÞ

€̄ut � ð1=3Þðm̄cH1 þ m̄rH2Þ
€̄ut � ð1=24Þðc=LÞ2m̄bððxc=fcÞH1 þ ðxr=frÞH2Þ

€̄ub;xx

� ð1=144Þðc=LÞ2ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄ub;xx � ðm̄c=6Þ €̄ub

þ ð1=2Þf1þ ðdt=cÞgðL=cÞðxcH1 þ xrH2Þw̄t;x̄ þ ð1=2ÞðL=cÞf1þ ðdb=cÞgðxcH1 þ xrH2Þw̄b;x̄ þft ūt;xx

� ðL=cÞ2ðxcH1 þ xrH2Þūt � ðft=24Þðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þūt;xxxx

þ ðL=cÞ2ðxcH1 þ xrH2Þūb þ ðfb=24Þðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þūb;xxxx

� B2
0bdtL2=ðmetEÞūt;xx þ B2

0bdtc2Gc=ð24metEEcÞūt;xxxx

� B2
0bdbc2Gc=ðð24mebEEcÞÞūb;xxxx ¼ 0, (11)

ð1=12Þðdt=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄wt;x̄ þ ð1=288Þðdt=cÞðc=LÞ3ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ

€̄wt;xxx

� ð1=6Þðdb=cÞðc=LÞðm̄cH1 þ m̄rH2Þ
€̄wb;x̄ þ ð1=288Þðdb=cÞðc=LÞ3ðm̄cðxc=fcÞH1

þ m̄rðxr=frÞH2Þ
€̄wb;xxx � ð1=6Þðm̄cH1 þ m̄rH2Þ

€̄ut � ð1=24Þðc=LÞ2m̄tððxc=fcÞH1 þ ðxr=frÞH2Þ
€̄ut;xx

� ð1=144Þðc=LÞ2ðm̄cðxc=fcÞH1 þ m̄rðxr=frÞH2Þ
€̄ut;xx � ðm̄bÞ

€̄ub � ð1=3Þðm̄cH1 þ m̄rH2Þ
€̄ub

þ ð1=24Þðm̄bÞðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þ
€̄ub;xx

þ ð1=144Þðc=LÞ2ðm̄cðxc=fcÞH1m̄rðxr=frÞH2Þ
€̄ub;xx

� ð1=2Þf1þ ðdt=cÞgðL=cÞðxcH1 þ xrH2Þw̄t;x̄ � ð1=2ÞðL=cÞf1þ ðdb=cÞgðxcH1 þ xrH2Þw̄b;x̄

þ ðL=cÞ2ðxcH1 þ xrH2Þūt þ fbūb;xx þ ðft=24Þðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þūt;xxxx

� ðL=cÞ2ðxcH1 þ xrH2Þūb � ðfb=24Þðc=LÞ2ððxc=fcÞH1 þ ðxr=frÞH2Þūb;xxxx

� B2
0bdbL2=ðmebEÞūb;xx � B2

0bdtc2Gc=ð24metEEcÞūt;xxxx þ B2
0bdbc2Gc=ðð24mebEEcÞÞūb;xxxx ¼ 0. (12)

For the sandwich beam with MRE placed in the middle of the core

H1 ¼ HðxÞ � Hðx� L1Þ þ Hðx� L2Þ; H2 ¼ Hðx� L1Þ � Hðx� L2Þ. (13)

Here L1 ¼ L=3, L2 ¼ 2L=3, and H is the Heaviside function.
It may be noted that in the absence of MRE patch and magnetic field, the above equations of motion Eqs. (9)–(12)

reduces to those obtained in the work of Dwivedy et al. [14]. Further, in the absence of periodic axial forcing these
equations reduces to those of Frostig and Baruch [5]. Also, in the absence of axial periodic load, Eqs. (9)–(12) reduces to
those obtained by Zhou and Wang [22].

3. Approximate solution

To obtain the temporal equations of motion, generalized Galerkin’s method is used considering multimode
discretization as follows:

w̄t ¼
XN
m¼1

f mðt̄Þwmðx̄Þ; w̄b ¼
X2N

q¼Nþ1

f qðt̄Þwqðx̄Þ; ūt ¼
X3N

r¼2Nþ1

f rðt̄Þurðx̄Þ; and ūb ¼
X4N

s¼3Nþ1

f sðt̄Þusðx̄Þ. (14)

Here N is a positive integer representing the number of modes taken in the analysis, f mðt̄Þ, f qðt̄Þ, f rðt̄Þ, and f sðt̄Þ are the
generalized coordinates; wmðx̄Þ, wqðx̄Þ, urðx̄Þ, and usðx̄Þare the shape functions chosen to satisfy as many of the boundary
conditions.

Replacing H1 and H2 by using Eq. (13) in Eqs. (9)–(12), and applying generalized Galerkin’s principle the resulting
temporal equation of motion becomes

½M�f€f g þ ½K�ffg � P̄1 cos ōt½H�ffg ¼ f/g. (15)

Here ffg ¼ fff 1g
Tff 2g

Tff 3g
Tff 4g

TgT; f/g, and ½/� are null matrices, and ð�Þ ¼ dð Þ=dt̄. Other coefficients are as follows:

½M� ¼

½M11� ½M12� ½M13� ½M14�

½M21� ½M22� ½M23� ½M24�

½M31� ½M32� ½M33� ½M34�

½M41� ½M42� ½M43� ½M44�

2
66664

3
77775; ½K1� ¼

½K11� ½K12� ½K13� ½K14�

½K21� ½K22� ½K23� ½K24�

½K31� ½K32� ½K33� ½K34�

½K41� ½K42� ½K43� ½K44�

2
66664

3
77775,
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½F� ¼

½F11� ½F12� ½F13� ½F14�

½F21� ½F22� ½F23� ½F24�

½F31� ½F32� ½F33� ½F34�

½F41� ½F42� ½F43� ½F44�

2
66664

3
77775; ½H� ¼

½H11� ½f� ½f� ½f�
½f� ½H22� ½f� ½f�
½f� ½f� ½f� ½f�
½f� ½f� ½f� ½f�

2
66664

3
77775,

½K2� ¼ ½K1� þ ½F� and ½K� ¼ ½K2� � P̄0½H�. (16)

The elements of various submatrices are given in Appendix A. Eq. (15) is a set of coupled Mathieu–Hill equations with
complex coefficients. If [L] is a normalized modal matrix of ½M��1½K�; then the linear transformation ffg ¼ ½L�fUg, will
transform Eq. (15) to

€Uq þ ðo�qÞ
2Uq þ 2� cos ōt̄

X4N

p¼1

bnqpUp ¼ 0; q ¼ 1 . . .4N, (17)

where ðo�qÞ2 are the distinct eigen values of ½M��1½K�, bnqp are the elements of ½B� ¼ �½L��1½M��1½H�½L�, and � ¼ P̄1=2o1 for
the present analysis.

The complex frequency and forcing parameters in terms of real and imaginary parts are given by

on
q ¼ oq;R þ joq;I; bnqp ¼ bqp;R þ jbqp;I . (18)

Following shape functions are taken for numerical calculations. These shape functions are slight modifications of the shape
functions taken in the work of Ray and Kar [12] and are similar to those presented in the work of Dwivedy et al. [14]. For
completeness of the work, the shape functions of all the boundary conditions are written below.

For simply supported beam:

wmðx̄Þ ¼ sinðmpx̄Þ; wqðx̄Þ ¼ sinðq̄px̄Þ; urðx̄Þ ¼ cosðr̄px̄Þ; usðx̄Þ ¼ cosðs̄px̄Þ, (19)

where q̄ ¼ ðq� NÞ; r̄ ¼ ðr � 2NÞ, and s̄ ¼ ðs� 3NÞ.
For clamped–pinned beam:

wmðx̄Þ ¼ 2ðmþ 2Þx̄ðmþ1Þ � ð4mþ 6Þx̄ðmþ2Þ þ 2ðmþ 1Þx̄ðmþ3Þ,

wqðx̄Þ ¼ 2ðq̄þ 2Þx̄ðq̄þ1Þ � ð4q̄þ 6Þx̄ðq̄þ2Þ þ 2ðq̄þ 1Þx̄ðq̄þ3Þ,

ur̄ðx̄Þ ¼ ðr̄ þ 1Þx̄r̄ � k̄x̄ðr̄þ1Þ; usðx̄Þ ¼ ðs̄þ 1Þx̄s̄ � sxðs̄þ1Þ. (20)

For clamped–guided beam:

wmðx̄Þ ¼ ðmþ 3Þðmþ 2Þðmþ 1Þf2þ ð2� m1Þmgx̄
ðmþ1Þ � ½2ðmþ 3Þðmþ 1Þ2f1þ ð2� m1Þmg

þ m1ðmþ 1Þ=f2ðmþ 2Þ þ ð2� m1Þðmþ 2Þmg�x̄ðmþ2Þ

þ ½ðmþ 2Þðmþ 1Þ2mð2� m1Þ � m1mðmþ 1Þ=f2ðmþ 3Þ þ ð2� m1Þðmþ 3Þmg�x̄ðmþ3Þ,

wqðx̄Þ ¼ ðq̄þ 3Þðq̄þ 2Þðq̄þ 1Þf2þ ð2� m2Þq̄gx̄
ðq̄þ1Þ � ½2ðq̄þ 3Þðq̄þ 1Þ2f1þ ð2� m2Þq̄g

þ m2fðq̄þ 1Þ=f2ðq̄þ 2Þ þ ð2� m2Þðq̄þ 2Þq̄�x̄ðq̄þ2Þ

þ ½ðq̄þ 2Þðq̄þ 1Þ2qð2� m2Þ � m2q̄ðq̄þ 1Þ=f2ðq̄þ 3Þ þ ð2� m2Þðq̄þ 3Þqg�x̄ðq̄þ3Þ,

urðx̄Þ ¼ ðr̄ þ 1Þx̄r � ½2ðr̄ þ 3Þðr̄ þ 2Þðr̄ þ 1Þ þ r̄f1þ m1=ð2þ 2r̄ � m1 r̄Þg�x̄ðr̄þ1Þ,

us̄ðx̄Þ ¼ ðsþ 1Þx̄s̄ � ½2ðs̄þ 3Þðs̄þ 2Þðs̄þ 1Þ þ s̄f1þ m1=ð2þ 2s� m1s̄Þg�x̄ðs̄þ1Þ, (21)

where m1 ¼ Y=ð1þ YÞ, Y ¼ 3ð1þ ðc=dtÞ2Þ, m2 ¼ X=ð1þ XÞ, and X ¼ 3ð1þ ðc=dbÞ2Þ.
For clamped–free beam:

wmðx̄Þ ¼ ðmþ 3Þðmþ 2Þfðmþ 2Þðmþ 1Þ � m2gx̄
ðmþ1Þ þ ½2ðmþ 3Þðmþ 1Þfm2 �mðmþ 2Þg

� m1mðmþ 1Þ=fðmþ 2Þðmþ 1Þ � m2g� þ ½ðmþ 2Þðmþ 1Þf�m2 þmðmþ 1Þg

� m1mðmþ 1Þ2=fðmþ 3Þðmþ 2Þðmþ 1Þ � ðmþ 3Þm2gx̄
ðmþ3Þ,

wqðx̄Þ ¼ ðq̄þ 3Þðq̄þ 2Þfðq̄þ 2Þðq̄þ 1Þ � m2gx̄
ðq̄þ1Þ þ ½2ðq̄þ 3Þðq̄þ 1Þfm2 � q̄ðq̄þ 2Þg

� m1q̄ðq̄þ 1Þ=fðq̄þ 2Þðq̄þ 1Þ � m2g� þ ½ðq̄þ 2Þðq̄þ 1Þf�m2 þ q̄ðq̄þ 1Þg

� m1q̄ðq̄þ 1Þ2=fðq̄þ 3Þðq̄þ 2Þðq̄þ 1Þ � ðq̄þ 3Þm2gx̄
ðq̄þ3Þ,

urðx̄Þ ¼ ðr̄ þ 1Þxr̄ � rxðr̄þ1Þ; usðx̄Þ ¼ ðs̄þ 1Þxr̄ � sxðs̄þ1Þ. (22)
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4. Regions of instability

The boundaries of the regions of instability for simple and combination resonances are obtained by the modified Hsu’s
[10] method. When the system is excited at a frequency nearly equal to twice the natural frequencies principal parametric
resonance and when it is excited near a frequency, which is equal to sum or differences of any two modal frequencies
combination resonances of sum or difference types take place. Following relations have been used to obtain the boundaries
of the regions of instability for simple and combination resonances [12,14].
(1)
 For principal parametric resonance case:

jðō=2Þ �om;Rjo1
4wm; m ¼ 1;2; . . . ;4N, (23)

where

wm ¼
4�2ðb2

mm;R þ b2
mm;IÞ

o2
m;R

� 16o2
m;I

2
4

3
5. (24)
(2)
 For combination resonance of sum type:

jō� ðom;R þov;RÞjowmv. (25)

In the presence of damping

wmv ¼
ðom;I þov;IÞ

4ðom;Iov;IÞ
1=2

4�2ðbmv;Rbvm;R þ bmv;Ibvm;IÞ

om;Rov;R
� 16om;Iov;I

" #1=2

(26)

and for the undamped case

wmv ¼ �½bmv;Rbvm;R=om;Rbv;R�
1=2; mav m ¼ v ¼ 1;2; . . . ;4N. (27)
(3)
 For combination resonance of difference type:

jō� ðov;R �om;RÞjoLmv; m4v; m ¼ v ¼ 1;2; . . . ;4N. (28)

In the presence of damping

Lmv ¼
ðom;I þov;IÞ

4ðom;Iov;IÞ
1=2

4�2ðbmv;Ibvm;I � bmv;Rbvm;RÞ

om;Rov;R
� 16om;Iov;I

" #1=2

(29)

and for the undamped case

Lmv ¼ �½�bmv;Rbvm;R=om;Rbv;R�
1=2. (30)
5. Results and discussions

Here the instability regions of a three-layered, soft-cored; symmetric sandwich beam with MRE for simply supported,
clamped–pinned, clamped–guided, and clamped–free boundary conditions have been studied numerically using MATLAB.
The results have been compared with a sandwich beam in which the middle layer is fully made of soft-core. In the
parametric instability regions shown in the following figures, the regions enclosed by the curves are unstable and the
regions outside the curves are stable. Here the ordinate P̄1 is the amplitude of non-dimensional dynamic load, and
the abscissa ō is the non-dimensional forcing frequency. Following physical parameters have been taken for the numerical
analysis, which are similar to those taken by Zhou and Wang [22]. The span of the beam, L ¼ 150 mm; width, b ¼ 15 mm;
the top and bottom face thickness, dt ¼ db ¼ 0:1 mm; the core thickness, c ¼ 2 mm; Young’s modulus of the skins,
Et ¼ Eb ¼ 72 GPa; the zero-field shear modulus of MRE and the shear modulus of non-MRE soft-core is 0.388 MPa; the
Young’s modulus of the MRE part which is assumed to be unchanged with the applied magnetic field and the non-MRE part
is 1.7 MPa, the densities of the skins, rt ¼ rb ¼ 2700 kg=m3; the density of the core, including MRE part and the non-MRE
part (rc) is 1100 kg/m3. The permeability of the vacuum, m0 ¼ 1.26�10�6 H m�1 and the relative permeability of the skin
material is considered to be 1 for the instability regions plotted in Figs. 2–7. For Fig. 8, relative permeability of the skin
materials have been taken as 10 similar to those taken in the work of Zhou and Wang [22]. Following the variation of shear
modulus with magnetic field in the work of Deng and Gong [25], in this work, while for B0 ¼ 0.6 T, the shear modulus of the
MRE part has been considered to be 1.5 times that of zero-field shear modulus, for B0 ¼ 0.8 T, the shear modulus of the MRE
part has been taken as 1.55 times that of the zero-field shear modulus. The non-dimensional static loading P̄0 has been
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Fig. 2. Parametric instability regions of a simply supported sandwich beam for the first three modes of principal parametric resonance: ———, with only

soft-core and - - - - - - -, with MRE placed in middle of soft-core. mr ¼ 1.0.
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Fig. 3. Time response of soft-cored sandwich beam without MRE (at the point marked A in Fig. 2): (a) response of top skin in vertical direction (wt), (b)

response of bottom skin in vertical direction (wb), (c) response of top skin in horizontal direction (ut), and (d) response of bottom skin in horizontal

direction (ub).
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taken as 0.1. As it has been shown by Deng and Gong [25] that the variation in core loss factor in MRE with magnetic field is
negligible, here, for all conditions, core loss factor of 0.1 has been considered for both the MRE and non-MRE core materials.

In all the figures shown for instability regions, the curve with solid line represents the transition curves for the sandwich
beam without MRE and the curve with dashed or dotted line represents the transition curves for a sandwich beam with a
MRE patch placed at the middle of the core of the sandwich beam. It has been verified that using the equations given in Ref.
[14] same instability regions have been obtained for the sandwich beam with only viscoelastic core (i.e., the system
without MRE and magnetic field).

5.1. Simply supported beam

Considering the sandwich beam to be simply supported, Fig. 2 shows the principal parametric instability regions for the
first three modes of sandwich beams with and without having a MRE patch. This is obtained by using the shape function
given in Eq. (19) for a simply supported beam. For the beam with MRE, a magnetic field of 0.8 T has been considered.

It may clearly be observed that by using MRE patch one may alter the instability region. For example the point marked
‘A’ in Fig. 2 for principal parametric resonance of first mode is unstable for the sandwich beam without MRE as it is inside
the unstable region. But the same point when considered for the sandwich beam with MRE is stable as it is outside the
curves marked by the dashed line.
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Fig. 5. Parametric instability regions of a clamped–pinned sandwich beam for the first three modes of principal and combination parametric resonances:

———, with soft-core and - - - - - - -, with MRE placed in the middle of soft-core.
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To validate these results of instability regions, one may solve the temporal equation of motion Eq. (15) numerically to
get the responses of the system. Figs. 3 and 4 show the time response for the point marked ‘A’ in Fig. 2. Figs. 3(a)–(d) clearly
show that the time responses are unstable for the system without MRE, and Figs. 4(a)–(d) show that the system responses
are stable when the beam is provided with a MRE patch in the middle. Hence, the unstable regions shown in the figures are
in good agreement with those obtained by numerically solving the temporal equation of motion.
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Fig. 6. Parametric instability regions of a clamped–guided sandwich beam for the first three modes of principal and combination parametric resonances:

———, with soft-core and - - - - - - -, with MRE placed in the middle of soft-core.

Fig. 7. Parametric instability regions of a clamped–free sandwich beam for the first three modes of principal and combination parametric resonances:

———, with soft-core and - - - - - - -, with MRE placed in the middle of soft-core.
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From Fig. 2, it has been observed that the region of instability starts at a higher frequency while using a MRE patch at the
middle portion of the core. This may be due to the fact that the properties of the MRE and non-MRE part of the core are
considered to be the same, and due to the application of the magnetic filed, the stiffness of the sandwich structure
increases which causes shifting of the instability region to a higher frequency. Hence, one may actively control the vibration
of the sandwich structure by using MRE and applying magnetic field. It may be noted that the beam is observed to be stable
in combination resonance of sum type and difference type.

5.2. Clamped–pinned beam

Using the shape function for the clamped–pinned beam as given in Eq. (20), the instability regions for the first
three modes have been determined, and shown in Fig. 5. In this case the instability region starts at a higher frequency
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Fig. 8. Influence of magnetic field strength (B0) on the parametric instability region for different boundary conditions: (a–c) simply supported, (d–g)

clamped–pinned, (h–k) clamped–guided, and (l–o) clamped–free boundary conditions. Solid line (—) without MRE and without magnetic field, dashed

line (- - - - - - -) with MRE B0 ¼ 0.6 T, and dotted line (yy) B0 ¼ 0.8 T. mr ¼ 10.0.
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than that of the simply supported beam, and similar to the simply supported case, here also, the instability region occurs
at a higher frequency for a sandwich beam with a MRE patch. The beam is observed to be stable for combination
resonance of difference type. The instability regions are smaller for combination resonance for sandwich beam with a MRE
patch.
5.3. Clamped–guided beam

By taking into account the shape function given in Eq. (21) for the clamped–guided beam, the instability regions for
the first three modes of vibration have been determined, and are shown in Fig. 6. Similar to the previous two cases, here
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also, it can be observed that the instability regions occur at higher values of frequency in case of sandwich beam with
MRE in comparison to that of a beam without MRE part. The beam is observed to be stable for combination resonance
of difference type. As in this case, the natural frequencies of the system occur at lower frequencies as those
of clamped–pinned beam, the instability regions have been found to occur at lower frequencies than those shown
in Fig. 5.
5.4. Clamped–free beam

By using the shape function given in Eq. (22) for clamped–free beam, the instability regions for the clamped–free
sandwich beams have been plotted in Fig. 7. Similar to the previous cases, here also, the effect of the addition of the MRE
patch is to increase the stiffness, and so the shifting of the instability regions towards right. Also, it may be noted that in
this boundary condition, the instability regions start at a lower frequency in comparison to the other three cases. In case of
combination resonance of first and third mode, and second and third mode, the stability of the system improves
significantly.
5.5. Variation of instability regions with magnetic field and relative permeability

Fig. 8 shows the instability regions of the sandwich beam for the above mentioned four boundary conditions with
relative permeability of the skin materials mr equal to 10 and for three different values of magnetic field strength (viz.,
B0 ¼ 0, 0.6, and 0.8 T). Similar to the previous observations in Figs. 2–7, here also one may note that by using MRE patch and
magnetic field one may change the instability region of the sandwich beam. With increase in magnetic filed strength, as the
stiffness of the system increases, the instability region shifts toward right and hence, by suitably choosing the magnetic
field strength one may actively control the vibration as explained in Fig. 2. From these figures, it may also be noted that
while there is almost no change in the instability region in case of principal parametric resonance conditions, in
combination resonance the system becomes more stable as the instability regions move upwards. Particularly, in the
considered cases, the instability regions for combination resonances of higher modes (o2+o3, o3+o1) disappear indicating
the system to be stable in these resonance conditions. Hence it has been observed that the use of skin materials with higher
permeability improves the stability of the system particularly for combination resonance.

In Fig. 8 the instability regions for all four boundary conditions have been plotted to have a better comparison of
the instability regions with different boundary conditions. Clearly among these four boundary conditions, the instability
regions in case of clamped–free boundary condition occur at the lowest frequency and for clamped–pin beam it
occurs at the highest frequency. This is due to the fact that for a given beam, the modal frequencies for clamped–
free boundary condition is lowest and the corresponding modal frequencies for clamped–pin boundary is highest among
the four boundaries considered in this work. Using these plots one may find the critical dynamic loading ðP̄1crÞ below
which one may operate the system for the entire frequency range. This is marked by the vertical line in the instability plots
in Fig. 8.
6. Conclusions

In this work, the governing equations of motion of a soft-cored symmetric sandwich beam with magnetorheological
elastomer subjected to periodic axial end load has been derived using higher order theory. These equations have
been reduced to that of a Mathieu–Hill’s type of equations with complex coefficients which have been used to find
the parametric instability regions by applying modified Hsu’s method. The instability regions have been plotted for
simply supported, clamped–guided, clamped–pinned, and clamped–free end conditions for the sandwich beam with
and without MRE patch in the core. Also these regions are plotted for systems with principal parametric and com-
bination parametric resonances of sum and difference types. The effects of skin permeability and the magnetic
field strength on the instability regions have also been studied. The correctness of the instability regions has been
verified by finding the time response from the temporal equation of motion and they have been found to be in good
agreement.

In all the boundary conditions the regions of instability have been found to start at a higher frequency for the sandwich
beam having an MRE patch in comparison to the sandwich beam without it. Also, it has been observed that, the stability of
the systems improves significantly in case of combination resonance of sum type for the sandwich beam with MRE and
with skin materials having higher relative permeability.

It has been understood that the vibration of a soft-cored sandwich beam can be actively controlled by suitably using
magnetorheological elastomer patch and magnetic field. The developed equations will find a wide range of applications in
studying the amount of attenuation of vibration one may obtain by using the magnetorheological elastomer in a sandwich
beam when it is subjected to periodic axial loading.
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Appendix A

ðM11Þij ¼ ðm̄tÞ

Z 1

0
wmiwmj dx̄

 !
þ m̄c=3

Z 1

0
wmiwmjH1 dx̄

 !
þ ðm̄r=3Þ

Z 1

0
wmiwmjH2 dx̄

 !

þ fðm̄c=12Þðdt=LÞ2g

Z 1

0
w0miw

0
mjH1 dx̄

 !
þ fðm̄r=12Þðdt=LÞ2g

Z 1

0
w0miw

0
mjH2 dx̄

 !

þ fðm̄c=576Þðdt=cÞð1þ dt=cÞðc=LÞ4ðxc=fcÞg

Z 1

0
w00miw

00
mjH1 dx̄

 !

þ fðm̄r=576Þðdt=cÞð1þ dt=cÞðc=LÞ4ðxr=frÞg

Z 1

0
w00miw

00
mjH2 dx̄

 !
;

ðM12Þij ¼ ðm̄c=6Þ

Z 1

0
wmiwqjH1 dx̄

 !
þ ðm̄r=6Þ

Z 1

0
wmiwqjH2 dx̄

 !

� fðm̄c=24Þðdtdb=L2Þg

Z 1

0
w0miw

0
qjH1 dx̄

 !
þ fðm̄r=24Þðdtdb=L2Þg

Z 1

0
w0mjw

0
qiH2 dx̄

 !

þ fðm̄c=576Þðdb=cÞð1þ dt=cÞðc=LÞ4ðxc=fcÞg

Z 1

0
w00miw

00
qjH1 dx̄

 !

þ fðm̄r=576Þðdb=cÞð1þ dt=cÞðc=LÞ4ðxr=frÞg

Z 1

0
w00miw

00
qjH2 dx̄

 !
,

ðM13Þij ¼ � fðm̄tÞð1=48Þð1þ dt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00miu

0
rjH1 dx̄

 !

� fðm̄tÞð1=48Þð1þ dt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00miu

0
rjH2 dx̄

 !

þ fðm̄c=288Þð1þ dt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00miu

0
rjH1 dx̄

 !

þ fðm̄r=288Þð1þ dt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00miu

0
rjH2 dx̄

 !

� fðm̄c=6Þðdt=LÞg

Z 1

0
w0miurjH1 dx̄

 !
� fðm̄r=6Þðdt=LÞg

Z 1

0
w0miurjH2 dx̄

 !
,

ðM14Þij ¼ fð1=48Þðm̄bÞð1þ dt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00miu

0
sjH1 dx̄

 !

þ fð1=48Þðm̄bÞð1þ dt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00miu

0
sjH2 dx̄

 !

þ fð1=48Þðm̄c=6Þð1þ dt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00miu

0
sjH1 dx̄

 !

þ fð1=48Þðm̄r=6Þð1þ dt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00miu

0
sjH2 dx̄

 !

� fðm̄c=12Þðdt=LÞg

Z 1

0
w0miusjH1 dx̄

 !
� fðm̄r=12Þðdt=LÞg

Z 1

0
w0miusjH2 dx̄

 !
,

ðM21Þij ¼ ðm̄c=6Þ

Z 1

0
wqiwmjH1 dx̄

 !
þ ðm̄r=6Þ

Z 1

0
wqiwmjH2 dx̄

 !

� fðm̄c=24Þðdtdb=L2Þg

Z 1

0
w0qiw

0
mjH1 dx̄

 !
� fðm̄r=24Þðdtdb=L2Þg

Z 1

0
w0qiw

0
mjH2 dx̄

 !
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þ fðm̄c=576Þðdt=cÞð1þ db=cÞðc=LÞ4ðxc=fcÞg

Z 1

0
w00qiw

00
mjH1 dx̄

 !

þ fðm̄r=576Þðdt=cÞð1þ db=cÞðc=LÞ4ðxr=frÞg

Z 1

0
w00qiw

00
mjH2 dx̄

 !
,

ðM22Þij ¼ ðm̄bÞ

Z 1

0
wqiwqj dx̄

 !
þ ðm̄c=3Þ

Z 1

0
wqiwqjH1 dx̄

 !
þ ðm̄r=3Þ

Z 1

0
wqiwqjH2 dx̄

 !

þ fðm̄c=12Þðdt=LÞ2g

Z 1

0
w0qiw

0
qjH1 dx̄

 !
þ fðm̄r=12Þðdt=LÞ2g

Z 1

0
w0qiw

0
qjH2 dx̄

 !

þ fðm̄c=576Þðdb=cÞð1þ db=cÞðc=LÞ4ðxc=fcÞg

Z 1

0
w00qiw

00
qjH1 dx̄

 !

þ fðm̄r=576Þðdb=cÞð1þ db=cÞðc=LÞ4ðxr=frÞg

Z 1

0
w00qiw

00
qjH2 dx̄

 !
;

ðM23Þij ¼ � fð1=48Þðm̄tÞð1þ db=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00qiu

0
rjH1 dx̄

 !

� fð1=48Þðm̄tÞð1þ db=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00qiu

0
rjH2 dx̄

 !

� fð1=48Þðm̄c=6Þð1þ db=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00qiu

0
rjH1 dx̄

 !

� fð1=48Þðm̄r=6Þð1þ db=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00qiu

0
rjH2 dx̄

 !

þ fðmc=12Þðdb=LÞg

Z 1

0
w0qiurjH1 dx̄

 !
þ fðmr=12Þðdb=LÞg

Z 1

0
w0qiurjH2 dx̄

 !
;

ðM24Þij ¼ fð1=48Þðm̄bÞð1þ db=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00qiu

0
sjH1 dx̄

 !

þ fð1=48Þðm̄bÞð1þ db=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00qiu

0
sjH2 dx̄

 !

þ fð1=48Þðm̄c=6Þð1þ db=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
w00qiu

0
sjH1 dx̄

 !

þ fð1=48Þðm̄r=6Þð1þ db=cÞðc=LÞ3ðxr=frÞg

Z 1

0
w00qiu

0
sjH2 dx̄

 !

þ ðmc=6Þðdb=LÞ

Z 1

0
w0qiusjH1 dx̄

 !
þ ðmr=6Þðdb=LÞ

Z 1

0
w0qiusjH2 dx̄

 !
,

ðM31Þij ¼ � fðmc=288Þðdt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
u00riw

0
mjH1 dx̄

 !

� fðmr=288Þðdt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
u00riw

0
mjH2 dx̄

 !

� fðm̄c=6Þðdt=LÞg

Z 1

0
u0riwmjH1 dx̄

 !
� fðm̄r=6Þðdt=LÞg

Z 1

0
u0riwmjH2 dx̄

 !
,

ðM32Þij ¼ fðm̄c=12Þðdb=LÞg

Z 1

0
u0riwqjH1 dx̄

 !
þ fðm̄r=12Þðdb=LÞg

Z 1

0
u0riwqjH2 dx̄

 !

� fðm̄c=288Þðdb=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
u00riw

0
qjH1 dx̄

 !

� fðm̄r=288Þðdb=cÞðc=LÞ3ðxr=frÞg

Z 1

0
u00riw

0
qjH2 dx̄

 !
,
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ðM33Þij ¼ � fð1=24Þðm̄tÞðc=LÞ2ðxc=fcÞg

Z 1

0
u0riu
0
rjH1 dx̄

 !

� fð1=24Þðm̄tÞðc=LÞ2ðxr=frÞg

Z 1

0
u0riu
0
rjH2 dx̄

 !

� fð1=24Þðm̄c=6Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0riu
0
rjH1 dx̄

 !

� fð1=24Þðm̄r=6Þðc=LÞ2ðxr=frÞg

Z 1

0
u0riu
0
rjH2 dx̄

 !

� ðm̄tÞ

Z L

0
uriurj dx̄

 !
� ðm̄c=3Þ

Z 1

0
uriurjH1 dx̄

 !
� ðm̄c=3Þ

Z 1

0
uriurjH2 dx̄

 !
,

ðM34Þij ¼ � ðm̄c=6Þ

Z 1

0
uriusjH1 dx̄

 !
� ðm̄r=6Þ

Z 1

0
uriusjH2 dx̄

 !

þ fðm̄b=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0riu
0
sjH1 dx̄

 !
þ fðm̄b=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u0riu
0
sjH2 dx̄

 !

þ fðm̄c=144Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0riu
0
sjH1 dx̄

 !
þ fðm̄c=144Þðc=LÞ2ðxr=frÞg

Z 1

0
u0riu
0
sjH2 dx̄

 !
,

ðM41Þij ¼ � fðm̄c=12Þðdt=LÞg

Z 1

0
u0siwmjH1 dx̄

 !
� fðm̄r=12Þðdt=LÞg

Z 1

0
u0siwmjH2 dx̄

 !

þ fðm̄c=288Þðdt=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
u00siw

0
mjH1 dx̄

 !

þ fðm̄r=288Þðdt=cÞðc=LÞ3ðxr=frÞg

Z 1

0
u00siw

0
mjH2 dx̄

 !
,

ðM42Þij ¼ fðm̄c=6Þðdb=LÞg

Z 1

0
u0siwqjH1 dx̄

 !
þ fðm̄r=6Þðdb=LÞg

Z 1

0
u0siwqjH2 dx̄

 !

þ fðm̄c=288Þðdb=cÞðc=LÞ3ðxc=fcÞg

Z 1

0
u00siw

0
qjH1 dx̄

 !

þ fðm̄r=288Þðdb=cÞðc=LÞ3ðxr=frÞg

Z 1

0
u00siw

0
qjH2 dx̄

 !
,

ðM43Þij ¼ � ðm̄c=6Þ

Z 1

0
usiurjH1 dx̄

 !
� ðm̄r=6Þ

Z 1

0
usiurjH2 dx̄

 !

þ fðm̄t=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0siu
0
rjH1 dx̄

 !
þ fðm̄t=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u0siu
0
rjH2 dx̄

 !

þ fðm̄c=144Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0siu
0
rjH1 dx̄

 !
þ fðm̄r=144Þðc=LÞ2ðxr=frÞg

Z 1

0
u0siu
0
rjH2 dx̄

 !
,

ðM44Þij ¼ � ðm̄bÞ

Z 1

0
usiusj dx̄

 !
� ðm̄c=3Þ

Z 1

0
usiusjH1 dx̄

 !
� ðm̄r=3Þ

Z 1

0
usiusjH2 dx̄

 !

� fðm̄b=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0siu
0
sjH1 dx̄

 !
� fðm̄b=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u0siu
0
sjH2 dx̄

 !

� fðm̄c=144Þðc=LÞ2ðxc=fcÞg

Z 1

0
u0siu
0
sjH1 dx̄

 !
� fðm̄r=144Þðc=LÞ2ðxr=frÞg

Z 1

0
u0siu
0
sjH2 dx̄

 !
,
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ðK11Þij ¼ fðxc=4Þð1þ dt=cÞ2g

Z 1

0
w0miw

0
mjH1 dx̄

 !
þ fðxc=4Þð1þ dt=cÞ2g

Z 1

0
w0miw

0
mjH2 dx̄

 !

þ fðft=12Þðdt=LÞ2g

Z 1

0
w00miw

0
mj dx̄

 !
þ ffcðL=cÞ2g

Z 1

0
wmiwmjH1 dx̄

 !

þ ffrðL=cÞ2g

Z 1

0
wmiwmjH2 dx̄

 !
,

ðK12Þij ¼ � ffcðL=cÞ2g

Z 1

0
wmiwqjH1 dx̄

 !
þ fðxc=4Þð1þ dt=cÞð1þ db=cÞg

Z 1

0
w0miw

0
qjH1 dx̄

 !

þ fðxr=4Þð1þ dt=cÞð1þ db=cÞg

Z 1

0
w0miw

0
qjH2 dx̄

 !
� ffrðL=cÞ2g

Z 1

0
wmiwqjH2 dx̄

 !
,

ðK13Þij ¼ � fðxc=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
w0miurjH1 dx̄

 !
� fðxr=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
w0miurjH2 dx̄

 !

� fðft=48Þðc=LÞ3ð1þ dt=cÞðxc=fcÞg

Z 1

0
w000miu

00
rjH1 dx̄

 !

� fðft=48Þðc=LÞ3ð1þ dt=cÞðxr=frÞg

Z 1

0
w000miu

00
rjH2 dx̄

 !
,

ðK14Þij ¼ fðxc=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
w0miusjH1 dx̄

 !
þ fðxr=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
w0miusjH2 dx̄

 !

þ fðfb=48Þðc=LÞ3ð1þ dt=cÞðxc=fcÞg

Z 1

0
w000miu

00
sjH1 dx̄

 !

þ fðfb=48Þðc=LÞ3ð1þ dt=cÞðxr=frÞg

Z 1

0
w000miu

00
sjH2 dx̄

 !
,

ðK21Þij ¼ � ffcðL=cÞ2g

Z 1

0
wqiwmj dx̄

 !
þ fðxc=4Þð1þ dt=cÞð1þ db=cÞg

Z 1

0
w0qiw

0
mjH1 dx̄

 !

þ fðxr=4Þð1þ dt=cÞð1þ db=cÞg

Z 1

0
w0qiw

0
mjH2 dx̄

 !
,

ðK22Þij ¼ fðxc=4Þð1þ db=cÞ2g

Z 1

0
w0qiw

0
qjH1 dx̄

 !
þ fðxr=4Þð1þ db=cÞ2g

Z 1

0
w0qiw

0
qjH2 dx̄

 !

þ fðfb=12Þðdb=LÞ2g

Z 1

0
w00qiw

00
qj dx̄

 !
,

ðK23Þij ¼ fð�xc=2ÞðL=cÞð1þ db=cÞg

Z 1

0
w0qiurjH1 dx̄

 !
þ fð�xr=2ÞðL=cÞð1þ db=cÞg

Z 1

0
w0qiurjH2 dx̄

 !

� fðft=48Þðc=LÞ3ð1þ db=cÞðxc=fcÞg

Z 1

0
w000qiu

00
rjH1 dx̄

 !

� fðft=48Þðc=LÞ3ð1þ db=cÞðxr=frÞg

Z 1

0
w000qiu

00
rjH2 dx̄

 !
,

ðK24Þij ¼ fðxc=2ÞðL=cÞð1þ db=cÞg

Z 1

0
w0qiusjH1 dx̄

 !
þ fðxr=2ÞðL=cÞð1þ db=cÞg

Z 1

0
w0qiusjH2 dx̄

 !

þ fðfb=48Þðc=LÞ3ð1þ db=cÞðxc=fcÞg

Z 1

0
w000qiu

00
sjH1 dx̄

 !

þ fðfb=48Þðc=LÞ3ð1þ db=cÞðxr=frÞg

Z 1

0
w000qiu

00
sjH2 dx̄

 !
,
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ðK31Þij ¼ fð�xc=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
u0riwmjH1 dx̄

 !
þ fð�xr=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
u0riwmjH2 dx̄

 !
,

ðK32Þij ¼ fð�xc=2ÞðL=cÞð1þ db=cÞg

Z 1

0
u0riwqjH1 dx̄

 !
þ fð�xr=2ÞðL=cÞð1þ db=cÞg

Z 1

0
u0riwqjH2 dx̄

 !
,

ðK33Þij ¼ ð�ftÞ

Z 1

0
u0riu
0
rj dx̄

 !
� fðL=cÞ2xcg

Z 1

0
uriurjH1 dx̄

 !
� fðL=cÞ2xrg

Z 1

0
uriurjH2 dx̄

 !

� fðft=24Þðc=LÞ2ðxc=fcÞg

Z L

0
u00riu
00
rjH1 dx̄

 !
� fðft=24Þðc=LÞ2ðxr=frÞg

Z L

0
u00riu
00
rjH2 dx̄

 !
,

ðK34Þij ¼ fðL=cÞ2xcg

Z 1

0
uriusjH1 dx̄

 !
þ fðL=cÞ2xrg

Z 1

0
uriusjH2 dx̄

 !

þ fðfb=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u00riu
00
sjH1 dx̄

 !
þ fðfb=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u00riu
00
sjH2 dx̄

 !
,

ðK41Þij ¼ fðxc=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
u0siwmjH1 dx̄

 !
þ fðxr=2ÞðL=cÞð1þ dt=cÞg

Z 1

0
u0siwmjH2 dx̄

 !
,

ðK42Þij ¼ fðxc=2ÞðL=cÞð1þ db=cÞg

Z 1

0
u0siwqjH1 dx̄

 !
þ fðxr=2ÞðL=cÞð1þ db=cÞg

Z 1

0
u0siwqjH2 dx̄

 !
,

ðK43Þij ¼ fðL=cÞ2xcg

Z 1

0
usiurjH1 dx̄

 !
þ fðL=cÞ2xrg

Z 1

0
usiurjH2 dx̄

 !

þ fðft=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u00siu
00
rjH1 dx̄

 !
þ fðft=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u00siu
00
rjH2 dx̄

 !
,

ðK44Þij ¼ ð�fbÞ

Z 1

0
u0siu
0
sj dx̄

 !
� fðL=cÞ2xcg

Z 1

0
usiusjH1 dx̄

 !
� fðL=cÞ2xrg

Z 1

0
usiusjH2 dx̄

 !

� fðfb=24Þðc=LÞ2ðxc=fcÞg

Z 1

0
u00siu
00
sjH1 dx̄

 !
� fðfb=24Þðc=LÞ2ðxr=frÞg

Z 1

0
u00siu
00
sjH2 dx̄

 !
,

½F11�ij ¼

Z 1

0
w0qiw

0
qj dx̄,

½F22�ij ¼

Z 1

0
w0miw

0
mj dx̄,

ðH11Þij ¼ � B2
0bd2

t L=ð2pm0EÞ

Z 1

0
ðlnðx̄=ð1� x̄ÞÞÞ;x̄w0miw

0
mj dx̄

 !

þ B2
0bd2

t L=ð2pm0EÞ

Z 1

0
lnðx̄=ð1� x̄ÞÞw00miw

0
mj dx̄

 !

þ B2
0bdtL2=ðm0EÞ

Z 1

0
w0miw

0
mj dx̄

 !
þ B2

0bd3
t =ð12EmetÞ

Z 1

0
w00miw

00
mj dx̄

 !
,

ðH12Þij ¼ 0,

ðH13Þij ¼ B2
0bdtL2p=ð2m0EÞ

Z 1

0
ð1=ðlnðx̄=ð1� x̄ÞÞÞÞ;x̄w0miurj dx̄

 !

þ B2
0bdtL2=ð2m0EÞ

Z 1

0
p=ðlnðx̄=ð1� x̄ÞÞÞw0miu

0
rj dx̄

 !

þ B2
0bdtc3Gc=ð48EcELmetÞð1þ dt=cÞ

Z 1

0
w000miu

00
rj dx̄

 !
,
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ðH14Þij ¼ �B2
0bdbc3Gc=ð48EcELmebÞð1þ dt=cÞ

Z 1

0
w000miu

00
sj dx̄

 !
,

ðH21Þij ¼ 0,

ðH22Þij ¼ � B2
0bd2

bL=ð2pm0EÞ

Z 1

0
ðlnðx̄=ð1� x̄ÞÞÞ;x̄w0qiw

0
qj dx̄

 !

þ B2
0bd2

t L=ð2pm0EÞ

Z 1

0
lnðx̄=ð1� x̄ÞÞw00qiw

00
qj dx̄

 !

þ B2
0bdbL2=ðm0EÞ

Z 1

0
w0qiw

0
qj dx̄

 !
þ B2

0bd3
b=ð12EmetÞ

Z 1

0
w00qiw

00
qj dx̄

 !
,

ðH23Þij ¼ B2
0bdtc3Gc=ð48EcELmetÞð1þ db=cÞ

Z 1

0
w000qiu

00
rj dx̄

 !
,

ðH24Þij ¼ B2
0bdbL2p=ð2m0EÞ

Z 1

0
ð1=ðlnðx̄=ð1� x̄ÞÞÞÞ;x̄w0qiusj dx̄

 !

þ B2
0bdbL2=ð2m0EÞ

Z 1

0
p=ðlnðx̄=ð1� x̄ÞÞÞw0qiu

0
sj dx̄

 !

� B2
0bdbc3Gc=ð48EcELmebÞð1þ db=cÞ

Z 1

0
w000qiu

00
sj dx̄

 !
,

ðH31Þij ¼ 0,

ðH32Þij ¼ 0,

ðH33Þij ¼ B2
0bdtL2=ðmetEÞ

Z 1

0
u0riu
0
rj dx̄

 !
þ B2

0bdtc2Gc=ð24metEEcÞ

Z 1

0
u00riu
00
rj dx̄

 !
,

ðH34Þij ¼ �B2
0bdbc2Gc=ð24mebEEcÞ

Z 1

0
u00riu
00
sj dx̄

 !
,

ðH41Þij ¼ 0,

ðH42Þij ¼ 0,

ðH43Þij ¼ �B2
0bdtc2Gc=ð24metEEcÞ

Z 1

0
u00siu
00
rj dx̄

 !
,

ðH44Þij ¼ B2
0bdbL2=ðmebEÞ

Z 1

0
u0siu
0
sj dx̄

 !
þ B2

0bdbc2Gc=ð24mebEEcÞ

Z 1

0
u00siu
00
sj dx̄

 !
,

where t is for top layer and b is for bottom layer. In the above relations, w0
ð Þi ¼ qwð Þi=qx̄; and the submatrices which are not

covered by the above elements should be treated as null.
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